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Shot noise in the leaky integrate-and-fire neuron
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We study the influence of noise on the transmission of temporal information by a leaky integrate-and-fire
neuron using the theory of shot noise. The model includes a finite number of synapses and has a membrane
potential variancele factomodulated by the input signal. The phenomenon of stochastic resonance in spiking
neurons is analytically exhibited using an inhomogeneous Poisson process model of the spike trains, and links
with the traditional Ornstein-Uhlenbeck process obtained by a diffusion approximation are given. It is shown
that the modulated membrane potential variance inherent to the model gives better signal processing capabili-
ties than the diffusion approximation.
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[. INTRODUCTION finite number of vanishingly small synaptic inputs. This ap-
L . . . .proximation does not hold for neurons with a small number
The presence of noise in a signal processing device 'gf afferent fibers as found, for example, in the auditory path-
usually detrlnje_ntal to performance. Sometimes, how_ever, '\‘Nay. The aim of this paper is to study analytically and nu-
can be beneficial as shown by the theory of stochastic resqyerically the phenomenon of stochastic resonance in a leaky
nance(SR). For a nonlinear system with periodic input, SR jntegrate-and-fire neuron receiving actual spike trains instead
can be defined as an enhancement of the output signal-tgf 5 continuous waveform.
noise ratio(SNR) by the addition of nois¢1]. Analysis of SR in neurons transmitting spike trains is
Introduced two decades ago to explain the periodicity ofmade difficult by the fact that the membrane potential is a
the earth’s ice age2], SR has been the subject of consid- right-continuous jump process, instead of a continuous pro-
erable interest over the last decade and has been dematess in the diffusion approximation. It was first studied in
strated in various bistable systefi3s4] and living organisms [18] with the input being the sum of a deterministic periodic
[5,6]. Many studies involving peripheral sensory systemsspike train and a Poisson process representing the additive
that have exhibited SR7] have been carried out. SR has alsonoise. With the choice of parameters[i8], the neuron was
been extended to monostable systems and in particular t@ssentially acting as a coincidence detector, since two input
excitable device§8]. It has found a growing interest in neu- spikes sufficiently close caused a threshold crossinfl9h
roscience, since neural pathways contain many sources ¢tfie addition of a deterministic spike train and a stochastic
noise and nonlinearities. Two sources of noise along a neurabike train formed the input of the neuron. A multipeak SNR
pathway are the channel noise due to random openings angas numerically exhibited for a particular correlation param-
closings of ion channelf9], and the synaptic noise or the eter of the stochastic spike train. However, this study was
so-called spontaneous activity due to uncorrelated spikémited to the case where one spike of the noisy train was
trains[10]. There are a number of nonlinearities in the re-enough to generate a postsynaptic response. In another
sponse of neurons to synaptic input, the most important bezlosely related stud}20], the transmission of a large number
ing the thresholding mechanism for generating electricabf identical periodic spike trains with different phase shifts
spikes. The transmission of subthreshold stimuli by neuronsvas shown to be enhanced by the addition of random Pois-
has been studied using the FitzHugh-Nagumo mddé&l  son spike trains. The neuron model in this study included the
and the leaky integrate-and-fire neuron madg]. synaptic conductance, but only excitatory inputs were con-
SR in a periodically driven leaky integrate-and-fire neu-sidered and the study was entirely numerical.
ron model without a stimulus reset after firing has been ana- We investigate analytically and numerically the possible
lyzed recently{13,14]. However, these studies were carried benefits of random firing patterns in a mathematically trac-
out in the diffusion approximatiofi.5,16 in which the num-  table neural model with a finite number of synapses. The
ber of synapses in the neuron is effectively infinite. Thespiking neuron model and a derivation of the membrane po-
membrane potential dynamics is in this case described by &ntial are presented in Sec. Il. Statistics of the output spike
Langevin equatio17], corresponding to the limit of an in- train are analyzed in Sec. lll. In Sec. IV, the phenomenon of
SR in a spiking neuron is exhibited using the theory devel-
oped in the previous sections, and results are compared with

*Corresponding author. those obtained from the diffusion approximation limit. Fi-
Email address: n.hohn@medoto.unimelb.edu.au nally, in Sec. V, the main results are summarized and dis-
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Il. LEAKY INTEGRATE-AND-FIRE NEURON MODEL of deriving the OU diffusion process from Stein’s equation is

A. The diffusion approximation to take the limitN— for the following quantities:

The stochastic leaky integrate-and-fire neuron will be N2D N2D
used as a model of a nerve cgM]. In this model, an input Ye(D=N\jp()+ —,  7()=———, (5)
current charges the neuron membrane like a leaky capacitor 2Vin 2Vin
with time constant. When the membrane potential reaches
a thresholdVy,, an output spike is fired and the membrane _ﬂ

potential is deterministically reset. In between two firing Qo= ~ &=

events, the membrane potential of the neuron receiving in-
finitesimally small excitatory and inhibitory spikes from an whereN is the number of synapses ang(t) is aT-periodic
infinite number of synapses is governed by thetyioe sto-  positive function. This requires that the input currégt) in

N )

chastic differential equatiof22] Eq. (1) is defined as
dv(t) = —&:)H(t) dt-+DdW(t), (1) HO=Xin(O)Vin - 6)

The membrane potentidl(t) is hence transformed from a

wheredW(t) is a standard Wiener process ar(d) is the right-continuous jump process solution of Hé) to a fully
deterministic input current. After each threshold crossing, theontinuous process solution of E@).

membrane potential is reset to its resting poten¥igk=0. Equation(5) can be explained in biological terms as fol-
In the rest of this papet(t) is taken to be a positive periodic |ows. Assume that the neuron receives input signals fom
function with periodT. synapses and that each input transmits some information

Assume that the membrane potentiabjsat timet, and  about a stimulus via excitatory spikes described by an inho-
that the neuron does not fire betwetgrandt. The solution mogeneous Poisson process with ratg(t). The resulting
of the Langevin equatioft) is an Ornstein-UhlenbedlOU)  spike train at the soma is therefore an IHPP with rate
process whose mean and variance can be obtained by using,(t). In the same time, the neuron receives uncorrelated
stochastic calculus rul¢&3] or by solving the corresponding excitatory and inhibitory spikes, described by a homoge-
Fokker-Planck equatiof?4]. They read, respectively, neous Poisson process with r@é2V3,, from N2 synapses.
The pooled inputs can be described by two IHPPs with rates

E[V(t)|vo.tg]=vge 10/ 7+ ft|(u)e(uft)/rdu 2 ve(t) and v;(t). Moreover, in order for the input- and

to output-spike rates to be comparable, the postsynaptic poten-
tial amplitudes have to be of the order\gf,/N.
and In the following, we will use Eq(4) and Eq.(5) to derive
Dr the membrane statistics of a leaky integrate-and-fire neuron
Var V(t)|vg,to]= = (1—e 2t to)/7), (3)  receiving excitatory and inhibitory spikes with small but
2 nonvanishing amplitudes from a large but finite numieaf
Higher order cumulants are nyR4]. The membrane poten- Synapses.
tial therefore has a Gaussian distribution. ) o
C. Membrane-potential statistics
B. Finite-amplitude inputs A derivation of the membrane-potential probability den-

sity of a spiking neuron has already been published else-

. When the in_put spikes have a nonvanishing qmplitude, th?vhere[26]. A more compact version is sketched in the fol-
input spike trains are modeled by stochastic point processe wing for the particular case of E¢d) with the parameter
since it is the timing of spikes rather than their shape tha alues of Eq/(5). Assume that the membrane potentiabis
conveys the information carried by the neurp25]. A at timety and that the neuron does not fire betwégandt.

widely used description of the fluctuations of the neuron’ . v(t) andv;(t) be the respective contributions of each

membrane potential between two firing events in this case S 1PP train of impulses with rate(t) and i(t). Since Eq
H H 1 e | . .
given by Stein's modef21], (4) is linear, its solutionV(t) can be obtained a¥/(t)

V(t) =v(t)+v;(t). For instancey(t) can be seen as the output
dv(t)=— TdH a.dPg(t) +a;dP;(t), (4) of a first-order low-pass linear filter with impulse response
- o e V7 if t=0
where the resetting potential is set to &, and a; are the f(t)= ) (7)
respective amplitudes of incoming excitatory and inhibitory 0 if t<0,

spikes.P4(t) andP;(t) are two inhomogeneous Poisson pro- )
cesses(IHPPS with rates y(t) and v,(t), describing the and input
statistics of the excitatory and inhibitory input spike trains.
Equation (1) can be obtained from Eg4) by using a dit)=a S(t— 8
diffusion approximation15,16. As shown in[17], one way ® ezk (t=P0), ®
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where{p,} is a set of arrival times of an IHPP with rate
py) is a shot noise pro-
cess and itsith order cumulant is given by the generalized

ve(t). Thereforev(t)=ag2f(t—

Campbell’s theoren27]:

t
I(e”)[ue(t)luo,to]=agf Ye(W[f(t=w)]"du.  (9)
to

The same reasoning can be applied;f{d). Since the inhibi-
tory and excitatory spike trains are independant) is a
sum of two independent random variablegt) andv;(t),

and its cumulants are obtained by summing the cumulants of
ve(t) andv,(t). The expected value is the sum of two terms:

PHYSICAL REVIEW B3 031902

1 = t—mT)2
—Wm;w exp(——( 2:2 ) (14)

wherer;, is the mean input rate ang;, is the standard
deviation of the Gaussian functions,T is the average num-
ber of input spikes arriving at a synapse during one stimulus
period T. The synchronization index, which measures the
degree of phase locking between a spike train and a periodic
stimulus[29,30, can be shown to bE28]

2
T
sinzex;{ -2 T'n)

Nin(D)=riy T

(15

the exponennally decaying initial value and the mean contri-

bution of the incoming spikes in the time interya},t],

t
E[V(t)lvo,to]=voe’“’t°)”+vthf Nin(u)eY7du

to

(10
and the variance reads
Dr
VarV(t)|vg,to]= —- 5 (1- e~ 2(tto)/7)
V
+— f)\ (et qy,. (11
N 0
For k>1, higher order cumulants are
|(2k)[V(t)|vo,to]= W(l_e—zk(t—to)/r)
Vi [t )
+ —NZlitO)\m(u)ez"(“ v7qu,
(12
and
2PI1(+1
t _
|(2k+l)[V(t)|Uo,t0]: ™ Lkin(u)e(2k+l)(u t)/TdU.
0
13

As expected, taking the limNl—co gives a normal distribu-

tion solution of Eq.(1) with expected value and variance,

respectively, given by Eq$2) and (3).

The rate model of Eq(14) was chosen for its ability to
describe a spike train with an arbitrary synchronization index
covering the full range (0,1), whereas a sinusoidal input rate
function of the forma(t)=ag+2a, coswt+¢) only de-
scribes spike trains with synchronization index|/a, in the
range[0,0.5] due to the positivity requirements of the rate
functiona(t).

Figure 1 shows a plot of;,(t), V(t) and its theoretical
variance for typical values of the input parameters. For low
input synchronization indexes;,(t) is close to a sine func-
tion as shown in Fig. (B), where the solid curve represents
I(t)=N\;,(t)Vi, as given in Eqs(6) and (14). The dashed
line represents the time-averaged input current. Figdbe 1
shows the values of the membrane potential in a typical
simulation (black line, as well as the expected value Eq.
(10) (thick gray line. As the model does not include reversal
potentials, the membrane potential can theoretically diverge
locally if the main source of input is the inhibitory spike
train. However, in practice, the membrane potential is
bounded and always depolarized by the input signal. Due to
the fact that the second term of Ed.1) proportional to 1N
is not neglected, the variance is modulated by the input sig-
nal. This is illustrated in Fig. (t).

D. Validity of the approximations

As shown previously, the probability density of the mem-
brane potential can be approximated by a Gaussian by virtue
of the central limit theorem. An upper bound of the error
between the actual membrane potential distribution and the
normal approximation can be obtained from the Berry-
Esseen theorerB1]. However, in the particular case of a
high-density shot noise process with parameters given by Eq.
(5) and D=0, a result by[32] gives the following upper

bound:

In the following, we focus on the case where the number
N of incoming spike trains is large enough to assume that the 4 [ 2n
membrane potential has a Gaussian distribution, but too |F(x,t)—G(x)|<§ NAD'
small to approximate Eq11) by Eq.(3). The statistics of the 2(t)
membrane poten't|al are therefore Gaussian with mean an\fij/here F(x,t) is the centered and normalized distribution
variance, respectively, given by Eq20) and(11). The vari- function of the membrane potentidh(x) is the error func-
ance of the membrane potential is therefore modulated by thg on, andA,(t) is given b
input signal. 2 9 y

In the rest of this paper, the rate function of the input
IHPP is modeled by d-periodic sum of Gaussian functions
[28],

(16)

t
Az(t)=e’2‘”f Nin(uw)e?'7du. 17
to
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FIG. 2. Conditional probability densitg[ V(T)|0,0] of the ran-

dom variableV(t) in the absence of a spike generating threshold at

0T2T3T ~'4f~-g>T' 6T7T8T9T T t=T obtained from computer simulation of E¢) (black and
analytical results from Eq18) (thick gray line for D=0 (narrow

(c) bell-shaped curvésand D=0.02 (wide bell-shaped curvesThe
T T dotted line marksE[V(T)|0,0], the conditional expected value of
/\/\/ k J V(T). Other parameters same as Fig. 1.
\>_:,0'O1_ E. Noise
§ As the present paper is devoted to a study of stochastic
resonance in neurons transmitting spike trains, the definition
0 of the “noise” term is of primary importance.

0 T 27 3T 41 5,[T 6T 7T 8T 9T 10T When the membrane potential is described by the Lange-
vin equation(1), the distinction between deterministic and
FIG. 1. (a) T-periodic input current(t) (solid line) and average  Stochastic inputs is obvious: the deterministic input is the
input current(dashed ling as a function of timet for =1, T  currentl(t) and the noise term is clearly identified as the
=1/0.7, s;,=0.2, andr;,=0.9. The gray bar plot represents the Wiener processi\W(t) with strength\/ﬁ. After filtering, the
input spike train with ratéN\;,(t) and time binsT/10. (b) Typical  noise term leads to the membrane-potential variance given
simulated membrane potentigblack ling, theoretical expected py Eq.(3). In this case, the paramete@ is the root-mean-
value of the threshold-free membrane potential from&Q) (thick  gquare amplitude of the input noise. This quantity can then
gray ling, threshold valuegdashed ling and reseting valuédoted  pa normalized by the average distance to threshad} to
line). (c) Theoretical variance of the threshold-free membrane POcharacterize the noise in a stimulus-independent fashion.

tential from Eq.(11). For all the figures, voltages are given in units From Eq.(2). the time-averaged-offset expected value of the
of the thresholdv,, . Other parameters afé=100 andD = 0.02. a.(2), L 9 . P
membrane potential i§V..), defined as

As one would expect, the larger the number of input fibérs T (T

the smaller the error made by the Gaussian approximation. (Vee) = T fo H(t)dt. (19

The theoretical approximation was found to be in good

agreement with computer simulations of Eg) for N>25  The root-mean-square amplitude of the input noise is there-
over a large range of input parameters. The error scales dsre given in normalized units by

1/{N, as was previously found in a related sty@g]. Figure

2 shows the simulated probability density of the membrane VD7

potential and the Gaussian approximation o= Ven— (Vo) (20
) With this normalization process, the optimum noise level to
_ ~ {x=ELV(1)[0,01} be added to the input in the context of SR in a threshold
9(x)= \/27-rVar[V(t)|0,O] ex 2 VafV(t)|0,0] )’ detector is of the order of one _in normalized ur[[8§].. o
(18) On the other hand, when using Edg), both deterministic

input information and noise are embedded in the same sto-

chastic point process, making them less straightforward to
in the absence of a spike-generating thresholdNer100  separate than in the case of the Langevin equdtignin a
input fibers, and for the noise valuBs=0 andD=0.02. The similar way to what was done in the previous paragraph, we
match between analytical approximation and computer simuean define the input noise in E¢4) from the membrane-
lation is very good. potential variance. Following the decomposition of
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var V(t)|vg,to] into two terms in Eq(11), the input noise is (a) (b)
expressed as the sum of two independent random variable: :
representing, respectively, the noise due to the spontaneou 4! ! 086
activity with root-mean-square amplitugd® 7, and the noise !
due to the finite number of synapses with root-mean-square \

amplltude\/rrmvfh/ In this case, the time-averaged-offset :O 4 ~04
expected value of the membrane potential reads =% ! a

iy 0.2 0.2 .

th :
e R T
° / ey - 1\&*
, ) , ) ) 00" 2T 4T oT 8T 10T 00" 2T 4T 6T 8T 10T

which gives(V..)=r;, with the choice of unitsr=1, Vy, t t

=1 as in Fig. 1. The normalized input noise root-mean-

square amplitude can therefore be defined as FIG. 3. Interspike interval histogram obtained from computer

simulations of 50000 output spikdslots and theoretical FPTD
> > p(t) (gray ling for (@) s;,=0 and(b) s;,=0.2. Other parameters
vontop, (22) are the same as as Fig. 1. Exponential fit to the FPTD in the case of
a time-homogeneous input is shown by the dotted line.
where

A. Time-homogeneous input
oN= ! Tr"‘v”‘: L \ /ﬂ’ (23 When the input is a homogeneous Poisson process, the
Vin=(Ve) N 1-7in V N output spike train is a stationary renewal process and all the
information about the spike train is contained in the FPTD.

and As shown by the exponential fit in Fig(&, the output spike
train can be well approximated by a dead-time Poisson pro-
JD7 VD7 24 cess. The power-spectrum density of the output spike train
UD—Vth_<Vm> V(=) can be obtained from the FPTD [35,34]
i p(—f
In the following, oy Will be referred to as “internal” shot P(f)= (~) + p(~ ) (25)
noise since it is due to a parameter internal to the system, <t> —p(f) 1-p(=f)

namely, the finite numbeX of synapseso will be called

“external” diffusive noise as it is the noise quantity already

present in the limit of vanishingly small inputs and does notwhere”[,(f) is the Fourier transform op(t) and(t) is the
depend on the neuron intrinsic parameters. This externahean firing time. An example of power-spectrum densities
noise can be modeled as the spontaneous activity received lpytained from Eq(25) and from computer simulations of
the neuron, i.e., activity not correlated to the stimulus. In theeq. (4) is shown in Fig. 4a). The power spectrum is flat

limit N—c0, Eq. (22 becomesr= oy sinceoy=0. except for a dip at low frequencies, in accordance with the
almost Poissonian nature of the output spike train exhibited
Ill. OUTPUT STATISTICS by the exponential fit in Fig. @). In fact, as the input is

uncorrelated, the deviation of the output spike train from a

In this section, we examine the statistical properties of thePoisson process is due to internal characteristics of the neu-
neuron output. The first-passage time dendfTD) p(t), ron that can be described as follows. The neuron can theo-
which is equivalent to the interspike interval density, can beretically fire at any time after the last firing event with a
derived from the conditional probability density of the mem- nonzero probability36], since refractory effects are ignored
brane potential by solving an integral equati®#,34 and  here. However, the probability of having two output spikes
finding the eigenfunction corresponding to eigenvalue 1 ofiire in a very small time interval is extremely low due to the
an asymptotically stable Markov operator representing theleterministic reset of the membrane potential after a firing
spiking phase transition densif{t3,14. The output phase event and the subsequent time taken by the membrane po-
densityh(6), mean firing rate ,,;, and synchronization in- tential to reach its mean depolarization val(}..). The
dexs,,; can be derived from the first-passage time density irmodel therefore has a pseudorefractory period, as indicated
a straightforward way. As shown in Fig. 3, the agreemenby the nearzero probability density of having short interspike
between analytical and computer simulated FPTDs is veryntervals, which is illustrated in Fig.(8). The dip at low
good. We first consider the case of a time-homogeneous irfrequencies in the simulated power spectrum is consistent
put in Sec. llIA in order to understand the basic internalwith such a pseudorefractory perid@7]. The simulated
mechanism of a single neuron and to study the consequencpswer spectrum was obtained by discrete Fourier transfor-
of superposing output spike trains. In Sec. Il B, we extendmation of the simulated output spike train using a peri-
the results to a time-inhomogeneous input. odogram estimatg38] and a rectangular window to allow for
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(a) B. Inhomogeneous input
80 ' ' ' ’ When the input spike trains do not form a homogeneous
process, the output spike train is not a renewal process and
80l ] Eq. (25 does not hold. We will focus in the following on

periodic inputs. Recently developed techniques can be used
= to get the exact power spectrum density in this c8&.

% 40¢ T However, this exact calculation of a power spectrum is
= highly computational and not well suited for the numerous
= successive evaluations required for a study of stochastic
resonance. Another alternative consists in computing the ex-
act value of the power spectrum at integer multiples of the
driving frequency[13] and approximating the rest of the
spectrum by a flat Poissonian backgro(i8él]. This approxi-
mation is not very accurate at low frequencies due to the
pseudorefractory period of the neuron and the dip in the
power spectrum, a phenomemon largely independent of the
exact nature of the spike train.

If one considers the pooled outputs of a large number of
neurons, the resulting spike train can be approximated by an
IHPP with time dependent raf85]. This was shown if40]
60r 1 by time demodulating the FPTD of the superposed spike
trains to obtain a time-homogeneous process and applying
o 40 | statistical tests to compare the resulting FPTD with an expo-
K= nential function. In the present study, we focus on the result-

. %WMWWWHWWW ing power spectrum rather than the FPTD, since the SNR is
—20F ]

obtained from the former quantity. FropdQ], it is possible

- to get the output statistics of the pooled spike train from
ol T | those of a single unit. Assume that the pooled output spike
MM . PY— train_can be described by an IHPP with rdtét). We can
rewrite I'(t) asI'(t) =N«(t) to show that the pooled output
-20 : ; : : is the sum ofN spike trains with analogue statistics. This is
0 0.5 1 1.5 2 25 . o : ; )
f equivalent to considering the output spike train of a single

unit as an IHPP with rate(t). Even if this is clearly incor-

FIG. 4. () Power-spectral density of a single output spike trainrect due to the pseudorefractory effects of the model, it is an
(bottom and of the superposition of 1000 output spike treto)  acceptable approximation since the pooled output is an
obtained from computer simulation of E@) (black), Poisson ap- |HPP.
proximation as defined by Eq30) (thick straight gray ling and It can be shown that an inhomogeneous Poisson train of
theoretical result from Eq25) (white ling) in the case of a homo-  jmpulses with ratea(t) has an autocorrelation function
geneous inpus;,=0. (b) Same as fofa) with inhomogeneous in- R(t,€) = a(t) a(t+€)+ a(t) 8(e) [41]. If a(t) is periodic,
puts;,=0.2. The thick gray line and circles represent the first-orderthe process is periodically correlated or second-order cyclos-

approximation of, respectively, the background power spectrum an%ationary[42]. SR for cyclostationary processes has recently
its values at integer multiples of the driving frequency, as describe een studied in threshold devicd®3] using a two-

by Eq. (30). Observation timélo=1000. Other parameters are the dimensional Fourier transform of the signal covariance. In

same as Fig. 1. Frequentyn units of 1f. the following, we shall use a stationarized version of the

an easy comparison with theoretical results. autocorrelation function obtained by a time average over one
Since the sum of independent renewal processes tends period of the input stimulu§l8] or by imposing a uniform

a Poisson proced85], the superposition of a large number distribution of the phase of the inhomogeneous rate of input

of output spike trains can be approximated by a homogeen the initial condition[44]. Using a Fourier series expan-

neous Poisson process. As can be seen in K@, which  sion of the periodic rate(t), the phase-averaged autocorre-

shows the power spectral densities for a homogeneous inpugtion function reads

the power spectrum of the superposed output spike trains is

fairly flat, in agreement with a Poisson process. As the dip at ~ (R(t,€)) =(a(t)a(t+€)+ a(t) (¢))

low frequencies due to the pseudorefractory period vanishes, o

the effects of the reset of the membrane potential after the = o+ } 2 | |2C05<k2—ﬂe

.. L. 0 Kk

firing of each individual neuron can be neglected when look- 2 =1 T

ing at the response of a large number of neurons. The result-

ing spike train can be described by a homogeneous Poisson

process with a firing rate that is the sum of each individual

firing rate. where() denotes a phase average and

+ a05( 6),

(26)
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_ 1f " 2 q 5 2
a=7 Ta(t)ex =] ?t t. (27)
The stationary power spectrum of the spike train over a finite 15
durationT, is defined a$38]
1 To . D 1
P (w)==— j (R(t,€))e " 1de|. (28 <
0 TolJo

PTo(w) consists of a flat background with intensiy giv- 0.5

ing the average firing rate, and peaks at integer multiples of
the input frequency resulting from the periodicity @ft).

As_ stated in.th.e Introduction, SR will be exhipited by 0y 0.51 T 151 on
studying the variations of the output SNR as a function of the 0
input noise. The SNR is defined as the ratio between the - o ) .
amplitude of the power spectrum at the driving frequency FIG. 5. Spiking phase distribution of the input spike trédiash-

and the noise background. Using E(®6) and(28), it can be dotted and the output spike train of a single unit obtained from the
approximated by ’ theoryh(#6) (solid) given by Eq.(32) and from the first-order ap-

proximationh®(¢) from Eq. (33) (dashedl The gray bar plot is
obtained from simulation of 50 000 output spikes. Same parameters
), (29 as Fig. 1.

2
routsoutTO

2

Ry ~10l0g 14210) _10)
T,= 1V 10010 2a0 | 0G0

h ol is th hronization ind fth " nevertheless relatively close to the simulations results. This

wheres,,=| 4|/ a is the synchronization index of the out- can be explained by looking at the spiking phase transition

put spike train and, ;= «q is its average firing rate. A simi- : :
lar expression was derived for the SNR of an inhomogeneouggszltti)ézgé 1hAf Z)Sand the output rate(t) are linked by the

Poisson train of pulses i8] and used if40] for an infinite
time window. The assumption of an infinite time window is 1 To
not biologically realistic as the neuron has to process the h(6)= a(—
information in a finite timg39], and it is also not well suited Fou ~\27
for comparison with computer simulations.

From Eq.(29), the SNR is a first-order quantity that only
depends on the first two Fourier coefficients,(«4) of the 1
rate a(t). Therefore, any rate function with the first two h(g)=
Fourier coefficients given, respectively, lay and a4 will

define an IHPP with the same average firing rate and SNR ®Rs shown in Fig. 5, in which the spiking phase distribution is

the actual output spike train. We model in this study the lotted for both the input and outout spike trai .
output rate functiora priori by A ,,«(t) the T-periodic sum of piotted for bo € Input and output Spike raigp) is a
Gaussian functions defined by Ed4), using the subscript ;mooth function with a_smgle maximum for a Ia_rge range of
“out” to specify the output spike train. The calculation of Input parame.ters, and is therefqre well app(rlc)mmgted by Eq.
the output synchronization index and mean firing rate of a(33)' The main advantage of usn)gmlt andh®”(6) instead

of the exact parametes(t) andh(#6) is that the former are

single unit allows the parameterg,, and in Eq.(14) to : . ,
be ?Jniquely defined. Eencﬁ (fﬁ)“is a fﬁgl'éforde? z;pp)roxi- analytically accessible whereas the later can only be numeri-
out cally computed.

mation of the actual output ratg(t). The first-order approxi-
mation of the output power spectrum becomes

), 0<0<2w. (32

It can be approximated up to the first order by

TO
Noull 3—|, 0=<6<2m. (33

loutT 2

IV. STOCHASTIC RESONANCE

1| (7 . N . .
p(Tlo)(w): _U O<R(1)(t,6)>eﬂw5d6 , (30) Having introduced the neuron model and its output statis-
0

To tics in the previous sections, we may now study the phenom-
enon of SR from an analytical point of view in a neuron that
transmits spike trains, instead of the numerical approach
taken in earlier studiegl9,2qQ.

As defined in Sec. Il E, there are two sources of noise in
the neuron model: an “internal” shot noise due to a finite

As seen in Fig. &), P{Y ives the same value as the . \ .
) i 9. @) To(w) 9 , o numberN of input fibers and characterized lay,, and an
simulations for the background noise and at the driving fre~gytarnal” diffusive noise modeling the spontaneous neural

quency, and therefore the same SNR. However, values Qfctivity and characterized by . We will look in the fol-

P(Tlo)(w) at higher integer multiples of the driving frequency |oying at the influence of the diffusive noise for a given
are not reliable as they explicitly depend on higher ordemeuron architecture specified by a fixddwWhen a determin-
terms of the Fourier series of the output rat). They are istic signal and an additive noise are the inputs of a threshold

with

RO(t,€) =Nou )Xoyt + )+ o) 8(e). (31

031902-7
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FIG. 6. Upper rowia) Output synchronization indes;,, (b) output mean firing rate,,, and(c) output SNRRy_as a function of the
normalized spontaneous activity, . Lower row: (d) Soyt, (€) roun, and(f) Ry, as a function of the total normalized noise Input
parametersT=1/0.7, s,,=0.2, {V..)=r;,=0.9, andT,=1000 with unitst=1, V,;,=1. Results for the diffusion approximatidsolid
gray line and for the values oN corresponding tary=0.5 (dashefl o=0.7 (dashdot, o=0.9 (dotted, on=1.1 (solid), oy=1.3
(circles, andoy=1.5 (diamonds.

device, a necessary condition to exhibit SR is that the detegray lineg are similar on the two noise scales, and will be
ministic input is too weak to cross the threshold alpBleAs  used as a reference to study the influence of the number of
deterministic and stochastic inputs cannot be separated in Egynapses in the next section.

(4), this condition is approximated here by requiring that the

expected value of the membrane potential be subthreshold. B. Finite number of fibers

We first briefly review the case of the diffusion approxima-
tion to set a benchmark with which our results will be com-
pared.

Having a finite number of input fibers modifies the above
picture. Indeed as seen from Ed1), even in the absence of
spontaneous activity, i.el =0, the membrane potential has
a nonzero variance due to the finite numblesf input fibers,
and threshold crossings are therefore possible. Thus depend-

In the diffusion approximation, the number of input fibers ing on the value oN, the intrinsic noise level characterized
is effectively infinite (N—) and the results of stochastic by oy might be smaller or larger than the optimum noise
resonance in sensory neurons ap$,14. When no spon- level o,,. As the phenomenon of SR in a threshold device
taneous activity is added to the neuron, iR=0, the neu- is observed for an input noise with standard deviation of the
ron cannot fire since the input signal always remains suberder of the mean distance to threshpsd], the normalized
threshold. As the value db is increased, the threshold is standard deviatiomr,, is of order one. Fowy<o,p,, the
likely to be first crossed at a local maximum of the mem-addition of an increasing amount of spontaneous activity to
brane potential, but the neuron can skip a large number dhe system will cause it to exhibit the phenomenon of SR as
periods between successive firing events. The output syrthe SNR will first increase untibf+o5=05,, and then
chronization index is therefore high, whereas the output firdecrease asp, increases further. On the other hand, éqy
ing rate is low. The more noise, the higher the firing rate at> o, the addition of spontaneous activity will only dete-
the expense of a less synchronized output train. The maxiiorate the performance of the system and the SNR will de-
mum SNR is obtained as a trade off between the outputrease. The synchronization index and mean firing rate as a
synchronization index and the firing rate. The output syn{function of o, are, respectively, plotted for different values
chronization index, the mean firing rate, and the SNR for theof ¢ in Figs. §a) and b). The resulting SNR from Eq.
diffusion approximation are given as a function @f in  (29) is plotted in Fig. 6c).

Figs. 6a)—6(c) and as a function of in Figs. §d)—6(f). As For a givenc, the output synchronization index is largest
o=op in the diffusion approximation, these curvéhick for the smallest number of input fibers available as shown in

A. Diffusion approximation

031902-8
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Fig. 6(d). In contrast, the average firing rate remains almost x107°
independent of the noise modulations, since it is only related ’
to the average noise contribution to the system. This fact is
illustrated in Fig. 6e). For a given noise strengthr, the
largest SNR is therefore obtained for the su@+ o3, with

the largest possibley, i.e., the smallest available number of
input fibers.

0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T
C. The benefit of noise modulation t

An interesting finding of this study is that for a given  FIG. 7. Membrane-potential variance for=0.9, plotted for the
average noise level, having a membrane-potential varianc@ffusion approximation casep=0.9 (solid gray ling and for the
modulated by the input signal gives a SNR slightly largerc@s€on=0.9 corresponding to the maximum SNebtted ling.
than the one obtained in the diffusion approximation with the
same average noise level. The observations from the prevBNR in the diffusion approximation is given as a reference
ous paragraph can be explained as follows. (thick gray ling. For small values ofr, the two curves are

It can be seen from Eq11) that there exists a phase delay similar sinceoy is too small to create any noticeable noise
between the expected value and the variance of the menmodulation. Aso increases, the value ofy can be increased
brane potential, which is a function of the input frequency.and the noise modulation is more and more pronounced with
However, as it can be shown to be less thdf, the relative  the effect of enhancing the SNR. It is interesting to notice
influence of the input frequency on the enhancement of théhat the noise modulation does not change the location of the
SNR by noise modulation has been neglected in this studynaximum SNR, only its value.
Thus, as the noise modulation increases, there is more and
more noise near the local maxima of the average membrane V. CONCLUSION

potential, and less noise near the local minima. The threshold _ _ .
crossings are therefore more likely to occur near the local 1NiS study has established the phenomenon of stochastic

maxima of the average membrane potential, while crossing€Senance in leaky integrate-and-fire neurons that transmit
at other phase values are less likely to occur. The outpLﬁp'ke trains without a stimulus reset after firing in a fully

spike train will therefore be better synchronized to the inpuSyStematic way by using the theories of inhomogeneous

stimulus than an output spike train obtained for a larger numP0iSSON processes and shot noise. Since both input and out-

ber of input fiberdFig. 6(d)] while the average rate of firing put spike trains are modeled in the same way, the method is

remains the samEFig. 6)]. The SNR of the output spike consistent and can be extended to a succession of neurons
train is thus enhancelFig. 6()]. along a neural pathway. When the number of input fibers is

This result can be related to the observation of an earliefMite; it h_as been proven that the_ stochastic j“mp process
study[46], where it was shown that aperiodic SR could pefepresenting the membrane potential has a Gaussian distribu-

enhanced by modulating the noise strength, either by thHOn for which the mean and variance are given. As this

membrane potential or by the threshold crossing rate. Howdistribution is relatively close to the one of the traditional

ever, in the present study this phenomenon appears as a nafliffusion approximation, results concerning the frequency

ral consequence of having a finite number of synapses in th&NINg of neurons by means of the nojg&,33 are expected

neuron model without any of the artificial mechanisms used® &/S0 be valid for the model presented in this study.

in [46]. Qualitatively similar results were obtained in a nu-  1"€ main result to come out of this study is that it is

merical study of aperiodic SR in a FitzHugh-Nagumo neuron

model with white and correlated additive noig&]. 19
As shown in Fig. ), noise modulation improves the

performance of the system in the sense that if a certain noise

intensity o is allocated to the neuron, a modulated noise will 1851
give a higher SNR than an unmodulated noise with the same o
intensity. Figure 7 shows the conditional variance of the B sl
membrane potential for the noise levet 0.9, obtained first [I'—O

as o=0p=0.9, corresponding to the diffusion approxima-
tion case(thick gray ling, and aso=oy=0.9, correspond- 1757
ing to the maximum achievable SNR. Therefore, there exists
an optimum neuron architecture, described in the present

. ) . . 17 : : : :
case byN=111 input fibers, that best transmits a given 0 0.4 0.8 1.2 1.6
stimulus, specified here by=1/0.7, (V.)=0.9, ands;, e
=0.2(with units7=1, V,=1). Figure 8 shows the maxi- FIG. 8. Optimum SNR(solid black line as a function ofo.

mum SNR that can be achieved as a function of the noiSgNR obtained for the diffusion approximatidthick gray line.
intensity o. It is the envelope of the set of curves plotted in SNR curve reaching the maximum SNR obtaineddgr= 0.9 (dot-
Fig. 6(f) obtained by keepingry as large as possible. The ted line.
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worth investigating the signal processing properties of neusembles, and therefore the use of even simpler neuron mod-
rons with a large but finite number of input fibers, as theyels such as threshold detectors may be justified.

have the interesting properties of having a membrane poten- In conclusion, it appears theoretically possible to enhance
tial variancede factomodulated by the input stimulus. In the the information transfer along a neural pathway such as the
framework of SR, this allows for an output SNR larger thanauditory pathway by adding a noisy component to the input
what would be obtained with an infinite number of input signal. Being a direct consequence of a thresholding mecha-
fibers and the same average input noise. This is achieved lnism, SR in neurons is highly dependent on the threshold
allocating the noise where it is most needed to cross théevel; and analytical studies of large arrays of neurons in
threshold, i.e., near local maxima of the membrane-potentigbarallel with the same input signal, independent noise
expected value, while reducing it where it will be less useful,sources, and different thresholds will have to be carried out
namely, around local minima of the expected value of theto gain a better understanding of the phenomenon.
membrane potential. By comparison, the noise is uniformly
allocated in the diffusion approximation limit leading to
lower performances.

Another result of this study concerns a qualitative justifi- N.H. was partly supported by Bourses gken Rhme
cation of using simple threshold detector devices as neuroAlpes de Formation #Etranger. A.N.B. was funded by the
models in large arrays of neurons in parallel. Starting fromCooperative Research Center for Cochlear Implants, Speech
the simple but still biologically realistic leaky integrate-and- and Hearing Research and The Bionic Ear Institute. We
fire neuron model, we have given qualitative arguments fowould like to thank H. E. Plesser for critically reading an
neglecting the membrane reset after firing in neuron enearlier version of the manuscript.
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