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Shot noise in the leaky integrate-and-fire neuron
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We study the influence of noise on the transmission of temporal information by a leaky integrate-and-fire
neuron using the theory of shot noise. The model includes a finite number of synapses and has a membrane
potential variancede factomodulated by the input signal. The phenomenon of stochastic resonance in spiking
neurons is analytically exhibited using an inhomogeneous Poisson process model of the spike trains, and links
with the traditional Ornstein-Uhlenbeck process obtained by a diffusion approximation are given. It is shown
that the modulated membrane potential variance inherent to the model gives better signal processing capabili-
ties than the diffusion approximation.
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I. INTRODUCTION

The presence of noise in a signal processing devic
usually detrimental to performance. Sometimes, howeve
can be beneficial as shown by the theory of stochastic r
nance~SR!. For a nonlinear system with periodic input, S
can be defined as an enhancement of the output signa
noise ratio~SNR! by the addition of noise@1#.

Introduced two decades ago to explain the periodicity
the earth’s ice ages@2#, SR has been the subject of consi
erable interest over the last decade and has been de
strated in various bistable systems@3,4# and living organisms
@5,6#. Many studies involving peripheral sensory syste
that have exhibited SR@7# have been carried out. SR has al
been extended to monostable systems and in particula
excitable devices@8#. It has found a growing interest in neu
roscience, since neural pathways contain many source
noise and nonlinearities. Two sources of noise along a ne
pathway are the channel noise due to random openings
closings of ion channels@9#, and the synaptic noise or th
so-called spontaneous activity due to uncorrelated sp
trains @10#. There are a number of nonlinearities in the r
sponse of neurons to synaptic input, the most important
ing the thresholding mechanism for generating electr
spikes. The transmission of subthreshold stimuli by neur
has been studied using the FitzHugh-Nagumo model@11#
and the leaky integrate-and-fire neuron model@12#.

SR in a periodically driven leaky integrate-and-fire ne
ron model without a stimulus reset after firing has been a
lyzed recently@13,14#. However, these studies were carri
out in the diffusion approximation@15,16# in which the num-
ber of synapses in the neuron is effectively infinite. T
membrane potential dynamics is in this case described b
Langevin equation@17#, corresponding to the limit of an in
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finite number of vanishingly small synaptic inputs. This a
proximation does not hold for neurons with a small numb
of afferent fibers as found, for example, in the auditory pa
way. The aim of this paper is to study analytically and n
merically the phenomenon of stochastic resonance in a le
integrate-and-fire neuron receiving actual spike trains inst
of a continuous waveform.

Analysis of SR in neurons transmitting spike trains
made difficult by the fact that the membrane potential is
right-continuous jump process, instead of a continuous p
cess in the diffusion approximation. It was first studied
@18# with the input being the sum of a deterministic period
spike train and a Poisson process representing the add
noise. With the choice of parameters in@18#, the neuron was
essentially acting as a coincidence detector, since two in
spikes sufficiently close caused a threshold crossing. In@19#,
the addition of a deterministic spike train and a stocha
spike train formed the input of the neuron. A multipeak SN
was numerically exhibited for a particular correlation para
eter of the stochastic spike train. However, this study w
limited to the case where one spike of the noisy train w
enough to generate a postsynaptic response. In ano
closely related study@20#, the transmission of a large numbe
of identical periodic spike trains with different phase shi
was shown to be enhanced by the addition of random P
son spike trains. The neuron model in this study included
synaptic conductance, but only excitatory inputs were c
sidered and the study was entirely numerical.

We investigate analytically and numerically the possib
benefits of random firing patterns in a mathematically tr
table neural model with a finite number of synapses. T
spiking neuron model and a derivation of the membrane
tential are presented in Sec. II. Statistics of the output sp
train are analyzed in Sec. III. In Sec. IV, the phenomenon
SR in a spiking neuron is exhibited using the theory dev
oped in the previous sections, and results are compared
those obtained from the diffusion approximation limit. F
nally, in Sec. V, the main results are summarized and d
cussed.
©2001 The American Physical Society02-1
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II. LEAKY INTEGRATE-AND-FIRE NEURON MODEL

A. The diffusion approximation

The stochastic leaky integrate-and-fire neuron will
used as a model of a nerve cell@21#. In this model, an input
current charges the neuron membrane like a leaky capa
with time constantt. When the membrane potential reach
a thresholdVth , an output spike is fired and the membra
potential is deterministically reset. In between two firin
events, the membrane potential of the neuron receiving
finitesimally small excitatory and inhibitory spikes from a
infinite number of synapses is governed by the Itoˆ-type sto-
chastic differential equation@22#

dV~ t !5S 2
V~ t !

t
1I ~ t ! Ddt1ADdW~ t !, ~1!

wheredW(t) is a standard Wiener process andI (t) is the
deterministic input current. After each threshold crossing,
membrane potential is reset to its resting potentialVres50.
In the rest of this paper,I (t) is taken to be a positive periodi
function with periodT.

Assume that the membrane potential isv0 at time t0 and
that the neuron does not fire betweent0 and t. The solution
of the Langevin equation~1! is an Ornstein-Uhlenbeck~OU!
process whose mean and variance can be obtained by u
stochastic calculus rules@23# or by solving the correspondin
Fokker-Planck equation@24#. They read, respectively,

E@V~ t !uv0 ,t0#5v0e2(t2t0)/t1E
t0

t

I ~u!e(u2t)/tdu ~2!

and

Var@V~ t !uv0 ,t0#5
Dt

2
~12e22(t2t0)/t!. ~3!

Higher order cumulants are null@24#. The membrane poten
tial therefore has a Gaussian distribution.

B. Finite-amplitude inputs

When the input spikes have a nonvanishing amplitude,
input spike trains are modeled by stochastic point proces
since it is the timing of spikes rather than their shape t
conveys the information carried by the neuron@25#. A
widely used description of the fluctuations of the neur
membrane potential between two firing events in this cas
given by Stein’s model@21#,

dV~ t !52
V~ t !

t
dt1aedPe~ t !1aidPi~ t !, ~4!

where the resetting potential is set to 0.ae and ai are the
respective amplitudes of incoming excitatory and inhibito
spikes.Pe(t) andPi(t) are two inhomogeneous Poisson pr
cesses~IHPPs! with rates ge(t) and g i(t), describing the
statistics of the excitatory and inhibitory input spike train

Equation ~1! can be obtained from Eq.~4! by using a
diffusion approximation@15,16#. As shown in@17#, one way
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of deriving the OU diffusion process from Stein’s equation
to take the limitN→` for the following quantities:

ge~ t !5Nl in~ t !1
N2D

2Vth
2

, g i~ t !5
N2D

2Vth
2

, ~5!

ae52ai5
Vth

N
,

whereN is the number of synapses andl in(t) is aT-periodic
positive function. This requires that the input currentI (t) in
Eq. ~1! is defined as

I ~ t !5l in~ t !Vth . ~6!

The membrane potentialV(t) is hence transformed from
right-continuous jump process solution of Eq.~4! to a fully
continuous process solution of Eq.~1!.

Equation~5! can be explained in biological terms as fo
lows. Assume that the neuron receives input signals fromN
synapses and that each input transmits some informa
about a stimulus via excitatory spikes described by an in
mogeneous Poisson process with ratel in(t). The resulting
spike train at the soma is therefore an IHPP with r
Nl in(t). In the same time, the neuron receives uncorrela
excitatory and inhibitory spikes, described by a homog
neous Poisson process with rateD/2Vth

2 , from N2 synapses.
The pooled inputs can be described by two IHPPs with ra
ge(t) and g i(t). Moreover, in order for the input- and
output-spike rates to be comparable, the postsynaptic po
tial amplitudes have to be of the order ofVth /N.

In the following, we will use Eq.~4! and Eq.~5! to derive
the membrane statistics of a leaky integrate-and-fire neu
receiving excitatory and inhibitory spikes with small b
nonvanishing amplitudes from a large but finite numberN of
synapses.

C. Membrane-potential statistics

A derivation of the membrane-potential probability de
sity of a spiking neuron has already been published e
where@26#. A more compact version is sketched in the fo
lowing for the particular case of Eq.~4! with the parameter
values of Eq.~5!. Assume that the membrane potential isv0
at timet0 and that the neuron does not fire betweent0 andt.
Let ve(t) and v i(t) be the respective contributions of eac
IHPP train of impulses with ratege(t) andg i(t). Since Eq.
~4! is linear, its solutionV(t) can be obtained asV(t)
5ve(t)1v i(t). For instance,ve(t) can be seen as the outp
of a first-order low-pass linear filter with impulse respons

f ~ t !5H e2t/t if t>0

0 if t,0,
~7!

and input

d~ t !5ae(
k

d~ t2pk!, ~8!
2-2
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SHOT NOISE IN THE LEAKY INTEGRATE-AND-FIRE NEURON PHYSICAL REVIEW E63 031902
where $pk% is a set of arrival times of an IHPP with rat
ge(t). Thereforeve(t)5ae(kf (t2pk) is a shot noise pro-
cess and itsnth order cumulant is given by the generaliz
Campbell’s theorem@27#:

l e
(n)@ve~ t !uv0 ,t0#5ae

nE
t0

t

ge~u!@ f ~ t2u!#ndu. ~9!

The same reasoning can be applied tov i(t). Since the inhibi-
tory and excitatory spike trains are independent,V(t) is a
sum of two independent random variablesve(t) and v i(t),
and its cumulants are obtained by summing the cumulant
ve(t) andv i(t). The expected value is the sum of two term
the exponentially decaying initial value and the mean con
bution of the incoming spikes in the time interval@ t0 ,t#,

E@V~ t !uv0 ,t0#5v0e2(t2t0)/t1VthE
t0

t

l in~u!e(u2t)/tdu

~10!

and the variance reads

Var@V~ t !uv0 ,t0#5
Dt

2
~12e22(t2t0)/t!

1
Vth

2

N E
t0

t

l in~u!e2(u2t)/tdu. ~11!

For k.1, higher order cumulants are

l (2k)@V~ t !uv0 ,t0#5
DtVth

2k22

2kN2k22
~12e22k(t2t0)/t!

1
Vth

2k

N2k21Et0

t

l in~u!e2k(u2t)/tdu,

~12!

and

l (2k11)@V~ t !uv0 ,t0#5
Vth

2k11

N2k E
t0

t

l in~u!e(2k11)(u2t)/tdu.

~13!

As expected, taking the limitN→` gives a normal distribu-
tion solution of Eq.~1! with expected value and varianc
respectively, given by Eqs.~2! and ~3!.

In the following, we focus on the case where the num
N of incoming spike trains is large enough to assume that
membrane potential has a Gaussian distribution, but
small to approximate Eq.~11! by Eq.~3!. The statistics of the
membrane potential are therefore Gaussian with mean
variance, respectively, given by Eqs.~10! and~11!. The vari-
ance of the membrane potential is therefore modulated by
input signal.

In the rest of this paper, the rate function of the inp
IHPP is modeled by aT-periodic sum of Gaussian function
@28#,
03190
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l in~ t !5r inT
1

A2ph in
2 (

m52`

1`

expS 2
~ t2mT!2

2h in
2 D , ~14!

where r in is the mean input rate andh in is the standard
deviation of the Gaussian functions.r inT is the average num
ber of input spikes arriving at a synapse during one stimu
period T. The synchronization index, which measures t
degree of phase locking between a spike train and a peri
stimulus@29,30#, can be shown to be@28#

sin5expF22S ph in

T D 2G . ~15!

The rate model of Eq.~14! was chosen for its ability to
describe a spike train with an arbitrary synchronization ind
covering the full range (0,1), whereas a sinusoidal input r
function of the form a(t)5a012a1 cos(vt1f) only de-
scribes spike trains with synchronization indexua1u/a0 in the
range@0,0.5# due to the positivity requirements of the ra
function a(t).

Figure 1 shows a plot ofl in(t), V(t) and its theoretical
variance for typical values of the input parameters. For l
input synchronization indexes,l in(t) is close to a sine func-
tion as shown in Fig. 1~a!, where the solid curve represen
I (t)5l in(t)Vth as given in Eqs.~6! and ~14!. The dashed
line represents the time-averaged input current. Figure 1~b!
shows the values of the membrane potential in a typ
simulation ~black line!, as well as the expected value E
~10! ~thick gray line!. As the model does not include revers
potentials, the membrane potential can theoretically dive
locally if the main source of input is the inhibitory spik
train. However, in practice, the membrane potential
bounded and always depolarized by the input signal. Du
the fact that the second term of Eq.~11! proportional to 1/N
is not neglected, the variance is modulated by the input
nal. This is illustrated in Fig. 1~c!.

D. Validity of the approximations

As shown previously, the probability density of the mem
brane potential can be approximated by a Gaussian by vi
of the central limit theorem. An upper bound of the err
between the actual membrane potential distribution and
normal approximation can be obtained from the Ber
Esseen theorem@31#. However, in the particular case of
high-density shot noise process with parameters given by
~5! and D50, a result by@32# gives the following upper
bound:

uF~x,t !2G~x!u,
4

3
A 2p

NA2~ t !
, ~16!

where F(x,t) is the centered and normalized distributio
function of the membrane potential,G(x) is the error func-
tion, andA2(t) is given by

A2~ t !5e22t/tE
t0

t

l in~u!e2u/tdu. ~17!
2-3
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As one would expect, the larger the number of input fibersN,
the smaller the error made by the Gaussian approximat
The theoretical approximation was found to be in go
agreement with computer simulations of Eq.~4! for N.25
over a large range of input parameters. The error scale
1/AN, as was previously found in a related study@28#. Figure
2 shows the simulated probability density of the membra
potential and the Gaussian approximation

g~x!5
1

A2p Var@V~ t !u0,0#
expS 2

$x2E@V~ t !u0,0#%2

2 Var@V~ t !u0,0# D ,

~18!

in the absence of a spike-generating threshold forN5100
input fibers, and for the noise valuesD50 andD50.02. The
match between analytical approximation and computer si
lation is very good.

FIG. 1. ~a! T-periodic input currentI (t) ~solid line! and average
input current~dashed line! as a function of timet for t51, T
51/0.7, sin50.2, andr in50.9. The gray bar plot represents th
input spike train with rateNl in(t) and time binsT/10. ~b! Typical
simulated membrane potential~black line!, theoretical expected
value of the threshold-free membrane potential from Eq.~10! ~thick
gray line!, threshold value~dashed line! and reseting value~doted
line!. ~c! Theoretical variance of the threshold-free membrane
tential from Eq.~11!. For all the figures, voltages are given in un
of the thresholdVth . Other parameters areN5100 andD50.02.
03190
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E. Noise

As the present paper is devoted to a study of stocha
resonance in neurons transmitting spike trains, the defini
of the ‘‘noise’’ term is of primary importance.

When the membrane potential is described by the Lan
vin equation~1!, the distinction between deterministic an
stochastic inputs is obvious: the deterministic input is
current I (t) and the noise term is clearly identified as t
Wiener processdW(t) with strengthAD. After filtering, the
noise term leads to the membrane-potential variance g
by Eq. ~3!. In this case, the parameterAD is the root-mean-
square amplitude of the input noise. This quantity can th
be normalized by the average distance to threshold@33# to
characterize the noise in a stimulus-independent fash
From Eq.~2!, the time-averaged-offset expected value of t
membrane potential iŝV`&, defined as

^V`&5
t

T E
0

T

I ~ t !dt. ~19!

The root-mean-square amplitude of the input noise is the
fore given in normalized units by

s5
ADt

Vth2^V`&
. ~20!

With this normalization process, the optimum noise level
be added to the input in the context of SR in a thresh
detector is of the order of one in normalized units@33#.

On the other hand, when using Eq.~4!, both deterministic
input information and noise are embedded in the same
chastic point process, making them less straightforward
separate than in the case of the Langevin equation~1!. In a
similar way to what was done in the previous paragraph,
can define the input noise in Eq.~4! from the membrane-
potential variance. Following the decomposition

-

FIG. 2. Conditional probability densityp@V(T)u0,0# of the ran-
dom variableV(t) in the absence of a spike generating threshold
t5T obtained from computer simulation of Eq.~4! ~black! and
analytical results from Eq.~18! ~thick gray line! for D50 ~narrow
bell-shaped curves! and D50.02 ~wide bell-shaped curves!. The
dotted line marksE@V(T)u0,0#, the conditional expected value o
V(T). Other parameters same as Fig. 1.
2-4
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SHOT NOISE IN THE LEAKY INTEGRATE-AND-FIRE NEURON PHYSICAL REVIEW E63 031902
Var@V(t)uv0 ,t0# into two terms in Eq.~11!, the input noise is
expressed as the sum of two independent random varia
representing, respectively, the noise due to the spontan
activity with root-mean-square amplitudeADt, and the noise
due to the finite number of synapses with root-mean-squ
amplitudeAtr inVth

2 /N. In this case, the time-averaged-offs
expected value of the membrane potential reads

^V`&5
tVth

T E
0

T

l in~ t !dt5tr inVth , ~21!

which gives^V`&5r in with the choice of unitst51, Vth
51 as in Fig. 1. The normalized input noise root-mea
square amplitude can therefore be defined as

s5AsN
2 1sD

2 , ~22!

where

sN5
1

Vth2^V`&
Atr inVth

2

N
5

1

12tr in
Atr in

N
, ~23!

and

sD5
ADt

Vth2^V`&
5

ADt

Vth~12tr in!
. ~24!

In the following,sN will be referred to as ‘‘internal’’ shot
noise since it is due to a parameter internal to the syst
namely, the finite numberN of synapses.sD will be called
‘‘external’’ diffusive noise as it is the noise quantity alread
present in the limit of vanishingly small inputs and does n
depend on the neuron intrinsic parameters. This exte
noise can be modeled as the spontaneous activity receive
the neuron, i.e., activity not correlated to the stimulus. In
limit N→`, Eq. ~22! becomess5sD sincesN50.

III. OUTPUT STATISTICS

In this section, we examine the statistical properties of
neuron output. The first-passage time density~FPTD! r(t),
which is equivalent to the interspike interval density, can
derived from the conditional probability density of the mem
brane potential by solving an integral equation@24,34# and
finding the eigenfunction corresponding to eigenvalue 1
an asymptotically stable Markov operator representing
spiking phase transition density@13,14#. The output phase
densityh(u), mean firing rater out , and synchronization in-
dexsout can be derived from the first-passage time density
a straightforward way. As shown in Fig. 3, the agreem
between analytical and computer simulated FPTDs is v
good. We first consider the case of a time-homogeneous
put in Sec. III A in order to understand the basic intern
mechanism of a single neuron and to study the conseque
of superposing output spike trains. In Sec. III B, we exte
the results to a time-inhomogeneous input.
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A. Time-homogeneous input

When the input is a homogeneous Poisson process,
output spike train is a stationary renewal process and all
information about the spike train is contained in the FPT
As shown by the exponential fit in Fig. 3~a!, the output spike
train can be well approximated by a dead-time Poisson p
cess. The power-spectrum density of the output spike t
can be obtained from the FPTD as@35,34#

P~ f !5
1

^t& S 11
r̃~ f !

12 r̃~ f !
1

r̃~2 f !

12 r̃~2 f !
D , ~25!

where r̃( f ) is the Fourier transform ofr(t) and ^t& is the
mean firing time. An example of power-spectrum densit
obtained from Eq.~25! and from computer simulations o
Eq. ~4! is shown in Fig. 4~a!. The power spectrum is fla
except for a dip at low frequencies, in accordance with
almost Poissonian nature of the output spike train exhib
by the exponential fit in Fig. 3~a!. In fact, as the input is
uncorrelated, the deviation of the output spike train from
Poisson process is due to internal characteristics of the
ron that can be described as follows. The neuron can th
retically fire at any time after the last firing event with
nonzero probability@36#, since refractory effects are ignore
here. However, the probability of having two output spik
fire in a very small time interval is extremely low due to th
deterministic reset of the membrane potential after a fir
event and the subsequent time taken by the membrane
tential to reach its mean depolarization value^V`&. The
model therefore has a pseudorefractory period, as indic
by the nearzero probability density of having short intersp
intervals, which is illustrated in Fig. 3~a!. The dip at low
frequencies in the simulated power spectrum is consis
with such a pseudorefractory period@37#. The simulated
power spectrum was obtained by discrete Fourier trans
mation of the simulated output spike train using a pe
odogram estimate@38# and a rectangular window to allow fo

FIG. 3. Interspike interval histogram obtained from compu
simulations of 50 000 output spikes~dots! and theoretical FPTD
r(t) ~gray line! for ~a! sin50 and ~b! sin50.2. Other parameters
are the same as as Fig. 1. Exponential fit to the FPTD in the cas
a time-homogeneous input is shown by the dotted line.
2-5
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NICOLAS HOHN AND ANTHONY N. BURKITT PHYSICAL REVIEW E 63 031902
an easy comparison with theoretical results.
Since the sum of independent renewal processes ten

a Poisson process@35#, the superposition of a large numb
of output spike trains can be approximated by a homo
neous Poisson process. As can be seen in Fig. 4~a!, which
shows the power spectral densities for a homogeneous in
the power spectrum of the superposed output spike train
fairly flat, in agreement with a Poisson process. As the dip
low frequencies due to the pseudorefractory period vanis
the effects of the reset of the membrane potential after
firing of each individual neuron can be neglected when lo
ing at the response of a large number of neurons. The re
ing spike train can be described by a homogeneous Poi
process with a firing rate that is the sum of each individ
firing rate.

FIG. 4. ~a! Power-spectral density of a single output spike tra
~bottom! and of the superposition of 1000 output spike trains~top!
obtained from computer simulation of Eq.~4! ~black!, Poisson ap-
proximation as defined by Eq.~30! ~thick straight gray line!, and
theoretical result from Eq.~25! ~white line! in the case of a homo
geneous inputsin50. ~b! Same as for~a! with inhomogeneous in-
put sin50.2. The thick gray line and circles represent the first-or
approximation of, respectively, the background power spectrum
its values at integer multiples of the driving frequency, as descri
by Eq. ~30!. Observation timeT051000. Other parameters are th
same as Fig. 1. Frequencyf in units of 1/t.
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B. Inhomogeneous input

When the input spike trains do not form a homogeneo
process, the output spike train is not a renewal process
Eq. ~25! does not hold. We will focus in the following on
periodic inputs. Recently developed techniques can be u
to get the exact power spectrum density in this case@36#.
However, this exact calculation of a power spectrum
highly computational and not well suited for the numero
successive evaluations required for a study of stocha
resonance. Another alternative consists in computing the
act value of the power spectrum at integer multiples of
driving frequency@13# and approximating the rest of th
spectrum by a flat Poissonian background@39#. This approxi-
mation is not very accurate at low frequencies due to
pseudorefractory period of the neuron and the dip in
power spectrum, a phenomemon largely independent of
exact nature of the spike train.

If one considers the pooled outputs of a large numbe
neurons, the resulting spike train can be approximated by
IHPP with time dependent rate@35#. This was shown in@40#
by time demodulating the FPTD of the superposed sp
trains to obtain a time-homogeneous process and appl
statistical tests to compare the resulting FPTD with an ex
nential function. In the present study, we focus on the res
ing power spectrum rather than the FPTD, since the SNR
obtained from the former quantity. From@40#, it is possible
to get the output statistics of the pooled spike train fro
those of a single unit. Assume that the pooled output sp
train can be described by an IHPP with rateG(t). We can
rewriteG(t) asG(t)5Na(t) to show that the pooled outpu
is the sum ofN spike trains with analogue statistics. This
equivalent to considering the output spike train of a sin
unit as an IHPP with ratea(t). Even if this is clearly incor-
rect due to the pseudorefractory effects of the model, it is
acceptable approximation since the pooled output is
IHPP.

It can be shown that an inhomogeneous Poisson train
impulses with ratea(t) has an autocorrelation functio
R(t,e)5a(t)a(t1e)1a(t)d(e) @41#. If a(t) is periodic,
the process is periodically correlated or second-order cyc
tationary@42#. SR for cyclostationary processes has recen
been studied in threshold devices@43# using a two-
dimensional Fourier transform of the signal covariance.
the following, we shall use a stationarized version of t
autocorrelation function obtained by a time average over
period of the input stimulus@18# or by imposing a uniform
distribution of the phase of the inhomogeneous rate of in
on the initial condition@44#. Using a Fourier series expan
sion of the periodic ratea(t), the phase-averaged autocorr
lation function reads

^R~ t,e!&5^a~ t !a~ t1e!1a~ t !d~e!&

5a0
21

1

2 (
k51

`

uaku2 cosS k
2p

T
e D1a0d~e!,

~26!

where^& denotes a phase average and

r
d
d
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ak5
1

TET
a~ t !expS 2 jk

2p

T
t Ddt. ~27!

The stationary power spectrum of the spike train over a fin
durationT0 is defined as@38#

PT0
~v!5

1

T0
U E

0

T0

^R~ t,e!&e2 j vedeU. ~28!

PT0
(v) consists of a flat background with intensitya0 giv-

ing the average firing rate, and peaks at integer multiple
the input frequency resulting from the periodicity ofa(t).

As stated in the Introduction, SR will be exhibited b
studying the variations of the output SNR as a function of
input noise. The SNR is defined as the ratio between
amplitude of the power spectrum at the driving frequen
and the noise background. Using Eqs.~26! and~28!, it can be
approximated by

RT0
510 log10S ua1u2T0

2a0
D510 log10S r outsout

2 T0

2 D , ~29!

wheresout5ua1u/a0 is the synchronization index of the ou
put spike train andr out5a0 is its average firing rate. A simi
lar expression was derived for the SNR of an inhomogene
Poisson train of pulses in@8# and used in@40# for an infinite
time window. The assumption of an infinite time window
not biologically realistic as the neuron has to process
information in a finite time@39#, and it is also not well suited
for comparison with computer simulations.

From Eq.~29!, the SNR is a first-order quantity that on
depends on the first two Fourier coefficients (a0 ,a1) of the
rate a(t). Therefore, any rate function with the first tw
Fourier coefficients given, respectively, bya0 and a1 will
define an IHPP with the same average firing rate and SNR
the actual output spike train. We model in this study t
output rate functiona priori by lout(t) theT-periodic sum of
Gaussian functions defined by Eq.~14!, using the subscrip
‘‘out’’ to specify the output spike train. The calculation o
the output synchronization index and mean firing rate o
single unit allows the parametersr out andhout in Eq. ~14! to
be uniquely defined. Hence,lout(t) is a first-order approxi-
mation of the actual output ratea(t). The first-order approxi-
mation of the output power spectrum becomes

PT0

(1)~v!5
1

T0
U E

0

T0

^R(1)~ t,e!&e2 j vedeU, ~30!

with

R(1)~ t,e!5lout~ t !lout~ t1e!1lout~ t !d~e!. ~31!

As seen in Fig. 4~b!, PT0

(1)(v) gives the same value as th

simulations for the background noise and at the driving f
quency, and therefore the same SNR. However, value
PT0

(1)(v) at higher integer multiples of the driving frequenc

are not reliable as they explicitly depend on higher or
terms of the Fourier series of the output ratea(t). They are
03190
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nevertheless relatively close to the simulations results. T
can be explained by looking at the spiking phase transit
densityh(u). h(u) and the output ratea(t) are linked by the
equation@13,14,45#

h~u!5
1

r outT
aS Tu

2p D , 0<u<2p. ~32!

It can be approximated up to the first order by

h(1)~u!5
1

r outT
loutS Tu

2p D , 0<u<2p. ~33!

As shown in Fig. 5, in which the spiking phase distribution
plotted for both the input and output spike trains,h(u) is a
smooth function with a single maximum for a large range
input parameters, and is therefore well approximated by
~33!. The main advantage of usinglout andh(1)(u) instead
of the exact parametersa(t) andh(u) is that the former are
analytically accessible whereas the later can only be num
cally computed.

IV. STOCHASTIC RESONANCE

Having introduced the neuron model and its output sta
tics in the previous sections, we may now study the pheno
enon of SR from an analytical point of view in a neuron th
transmits spike trains, instead of the numerical appro
taken in earlier studies@19,20#.

As defined in Sec. II E, there are two sources of noise
the neuron model: an ‘‘internal’’ shot noise due to a fin
numberN of input fibers and characterized bysN , and an
‘‘external’’ diffusive noise modeling the spontaneous neu
activity and characterized bysD . We will look in the fol-
lowing at the influence of the diffusive noise for a give
neuron architecture specified by a fixedN. When a determin-
istic signal and an additive noise are the inputs of a thresh

FIG. 5. Spiking phase distribution of the input spike train~dash-
dotted! and the output spike train of a single unit obtained from t
theory h(u) ~solid! given by Eq.~32! and from the first-order ap-
proximationh(1)(u) from Eq. ~33! ~dashed!. The gray bar plot is
obtained from simulation of 50 000 output spikes. Same parame
as Fig. 1.
2-7
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FIG. 6. Upper row:~a! Output synchronization indexsout , ~b! output mean firing rater out, and~c! output SNRRT0
as a function of the

normalized spontaneous activitysD . Lower row: ~d! sout , ~e! r out, and ~f! RT0
as a function of the total normalized noises. Input

parameters:T51/0.7, sin50.2, ^V`&5r in50.9, andT051000 with unitst51, Vth51. Results for the diffusion approximation~solid
gray line! and for the values ofN corresponding tosN50.5 ~dashed!, sN50.7 ~dashdot!, sN50.9 ~dotted!, sN51.1 ~solid!, sN51.3
~circles!, andsN51.5 ~diamonds!.
te

E
h
o
a-
m

rs
ic

ub
is
m
r
sy
fi
a

ax
tp
yn
th

e
r of

ve
f
s

end-
d
se
ice
the

to
as

-
de-
as a
s

.

st
in
device, a necessary condition to exhibit SR is that the de
ministic input is too weak to cross the threshold alone@8#. As
deterministic and stochastic inputs cannot be separated in
~4!, this condition is approximated here by requiring that t
expected value of the membrane potential be subthresh
We first briefly review the case of the diffusion approxim
tion to set a benchmark with which our results will be co
pared.

A. Diffusion approximation

In the diffusion approximation, the number of input fibe
is effectively infinite (N→`) and the results of stochast
resonance in sensory neurons apply@13,14#. When no spon-
taneous activity is added to the neuron, i.e.,D50, the neu-
ron cannot fire since the input signal always remains s
threshold. As the value ofD is increased, the threshold
likely to be first crossed at a local maximum of the me
brane potential, but the neuron can skip a large numbe
periods between successive firing events. The output
chronization index is therefore high, whereas the output
ing rate is low. The more noise, the higher the firing rate
the expense of a less synchronized output train. The m
mum SNR is obtained as a trade off between the ou
synchronization index and the firing rate. The output s
chronization index, the mean firing rate, and the SNR for
diffusion approximation are given as a function ofsD in
Figs. 6~a!–6~c! and as a function ofs in Figs. 6~d!–6~f!. As
s5sD in the diffusion approximation, these curves~thick
03190
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gray lines! are similar on the two noise scales, and will b
used as a reference to study the influence of the numbe
synapses in the next section.

B. Finite number of fibers

Having a finite number of input fibers modifies the abo
picture. Indeed as seen from Eq.~11!, even in the absence o
spontaneous activity, i.e.,D50, the membrane potential ha
a nonzero variance due to the finite numberN of input fibers,
and threshold crossings are therefore possible. Thus dep
ing on the value ofN, the intrinsic noise level characterize
by sN might be smaller or larger than the optimum noi
level sopt . As the phenomenon of SR in a threshold dev
is observed for an input noise with standard deviation of
order of the mean distance to threshold@33#, the normalized
standard deviationsopt is of order one. ForsN,sopt , the
addition of an increasing amount of spontaneous activity
the system will cause it to exhibit the phenomenon of SR
the SNR will first increase untilsN

2 1sD
2 5sopt

2 , and then
decrease assD increases further. On the other hand, forsN
.sopt , the addition of spontaneous activity will only dete
riorate the performance of the system and the SNR will
crease. The synchronization index and mean firing rate
function of sD are, respectively, plotted for different value
of sN in Figs. 6~a! and 6~b!. The resulting SNR from Eq
~29! is plotted in Fig. 6~c!.

For a givens, the output synchronization index is large
for the smallest number of input fibers available as shown
2-8
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Fig. 6~d!. In contrast, the average firing rate remains alm
independent of the noise modulations, since it is only rela
to the average noise contribution to the system. This fac
illustrated in Fig. 6~e!. For a given noise strengths, the
largest SNR is therefore obtained for the sumsD

2 1sN
2 with

the largest possiblesN , i.e., the smallest available number
input fibers.

C. The benefit of noise modulation

An interesting finding of this study is that for a give
average noise level, having a membrane-potential varia
modulated by the input signal gives a SNR slightly larg
than the one obtained in the diffusion approximation with
same average noise level. The observations from the pr
ous paragraph can be explained as follows.

It can be seen from Eq.~11! that there exists a phase dela
between the expected value and the variance of the m
brane potential, which is a function of the input frequen
However, as it can be shown to be less thanp/9, the relative
influence of the input frequency on the enhancement of
SNR by noise modulation has been neglected in this stu
Thus, as the noise modulation increases, there is more
more noise near the local maxima of the average memb
potential, and less noise near the local minima. The thres
crossings are therefore more likely to occur near the lo
maxima of the average membrane potential, while cross
at other phase values are less likely to occur. The ou
spike train will therefore be better synchronized to the in
stimulus than an output spike train obtained for a larger nu
ber of input fibers@Fig. 6~d!# while the average rate of firing
remains the same@Fig. 6~e!#. The SNR of the output spike
train is thus enhanced@Fig. 6~f!#.

This result can be related to the observation of an ea
study @46#, where it was shown that aperiodic SR could
enhanced by modulating the noise strength, either by
membrane potential or by the threshold crossing rate. H
ever, in the present study this phenomenon appears as a
ral consequence of having a finite number of synapses in
neuron model without any of the artificial mechanisms us
in @46#. Qualitatively similar results were obtained in a n
merical study of aperiodic SR in a FitzHugh-Nagumo neu
model with white and correlated additive noise@47#.

As shown in Fig. 6~f!, noise modulation improves th
performance of the system in the sense that if a certain n
intensitys is allocated to the neuron, a modulated noise w
give a higher SNR than an unmodulated noise with the sa
intensity. Figure 7 shows the conditional variance of t
membrane potential for the noise levels50.9, obtained first
as s5sD50.9, corresponding to the diffusion approxim
tion case~thick gray line!, and ass5sN50.9, correspond-
ing to the maximum achievable SNR. Therefore, there ex
an optimum neuron architecture, described in the pres
case byN5111 input fibers, that best transmits a giv
stimulus, specified here byT51/0.7, ^V`&50.9, andsin
50.2 ~with unitst51, Vth51). Figure 8 shows the maxi
mum SNR that can be achieved as a function of the no
intensitys. It is the envelope of the set of curves plotted
Fig. 6~f! obtained by keepingsN as large as possible. Th
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SNR in the diffusion approximation is given as a referen
~thick gray line!. For small values ofs, the two curves are
similar sincesN is too small to create any noticeable noi
modulation. Ass increases, the value ofsN can be increased
and the noise modulation is more and more pronounced w
the effect of enhancing the SNR. It is interesting to not
that the noise modulation does not change the location of
maximum SNR, only its value.

V. CONCLUSION

This study has established the phenomenon of stocha
resonance in leaky integrate-and-fire neurons that tran
spike trains without a stimulus reset after firing in a ful
systematic way by using the theories of inhomogene
Poisson processes and shot noise. Since both input and
put spike trains are modeled in the same way, the metho
consistent and can be extended to a succession of neu
along a neural pathway. When the number of input fibers
finite, it has been proven that the stochastic jump proc
representing the membrane potential has a Gaussian dist
tion for which the mean and variance are given. As t
distribution is relatively close to the one of the tradition
diffusion approximation, results concerning the frequen
tuning of neurons by means of the noise@48,33# are expected
to also be valid for the model presented in this study.

The main result to come out of this study is that it

FIG. 7. Membrane-potential variance fors50.9, plotted for the
diffusion approximation casesD50.9 ~solid gray line! and for the
casesN50.9 corresponding to the maximum SNR~dotted line!.

FIG. 8. Optimum SNR~solid black line! as a function ofs.
SNR obtained for the diffusion approximation~thick gray line!.
SNR curve reaching the maximum SNR obtained forsN50.9 ~dot-
ted line!.
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worth investigating the signal processing properties of n
rons with a large but finite number of input fibers, as th
have the interesting properties of having a membrane po
tial variancede factomodulated by the input stimulus. In th
framework of SR, this allows for an output SNR larger th
what would be obtained with an infinite number of inp
fibers and the same average input noise. This is achieve
allocating the noise where it is most needed to cross
threshold, i.e., near local maxima of the membrane-poten
expected value, while reducing it where it will be less use
namely, around local minima of the expected value of
membrane potential. By comparison, the noise is uniform
allocated in the diffusion approximation limit leading
lower performances.

Another result of this study concerns a qualitative just
cation of using simple threshold detector devices as neu
models in large arrays of neurons in parallel. Starting fr
the simple but still biologically realistic leaky integrate-an
fire neuron model, we have given qualitative arguments
neglecting the membrane reset after firing in neuron
v.
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:
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sembles, and therefore the use of even simpler neuron m
els such as threshold detectors may be justified.

In conclusion, it appears theoretically possible to enha
the information transfer along a neural pathway such as
auditory pathway by adding a noisy component to the in
signal. Being a direct consequence of a thresholding mec
nism, SR in neurons is highly dependent on the thresh
level; and analytical studies of large arrays of neurons
parallel with the same input signal, independent no
sources, and different thresholds will have to be carried
to gain a better understanding of the phenomenon.
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@16# P. Lánský, J. Theor. Biol.107, 631 ~1984!.
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